Improved anti-glioblastoma efficacy by IL-13Rα2 mediated copolymer nanoparticles loaded with paclitaxel

نویسندگان

  • Baoyan Wang
  • Lingyan Lv
  • Zhi Wang
  • Yan Jiang
  • Wei Lv
  • Xin Liu
  • Zhongyuan Wang
  • Yue Zhao
  • Hongliang Xin
  • Qunwei Xu
چکیده

Glioma presents one of the most malignant brain tumors, and the therapeutic effect is often limited due to the existence of brain tumor barrier. Based on interleukin-13 receptor α2 (IL-13Rα2) over-expression on glioma cell, it was demonstrated to be a potential receptor for glioma targeting. In this study, Pep-1-conjugated PEGylated nanoparticles loaded with paclitaxel (Pep-NP-PTX) were developed as a targeting drug delivery system for glioma treatment. The Pep-NP-PTX presented satisfactory size of 95.78 nm with narrow size distribution. Compared with NP-PTX, Pep-NP-PTX exhibited significantly enhanced cellular uptake in C6 cells (p < 0.001). The in vitro anti-proliferation evaluation showed that the IC50 were 146 ng/ml and 349 ng/ml of Pep-NP-PTX and NP-PTX, respectively. The in vivo fluorescent image results indicated that Pep-NP had higher specificity and efficiency in intracranial tumor accumulation. Following intravenous administration, Pep-NP-PTX could enhance the distribution of PTX in vivo glioma section, 1.98, 1.91 and 1.53-fold over that of NP-PTX group after 0.5, 1 and 4 h, respectively. Pep-NP-PTX could improve the anti-glioma efficacy with a median survival time of 32 days, which was significantly longer than that of PTX-NP (23 days) and Taxol(®) (22 days). In conclusion, Pep-NP-PTX is a potential targeting drug delivery system for glioma treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The synergic antitumor effects of paclitaxel and temozolomide co-loaded in mPEG-PLGA nanoparticles on glioblastoma cells

To get better chemotherapy efficacy, the optimal synergic effect of Paclitaxel (PTX) and Temozolomide (TMZ) on glioblastoma cells lines was investigated. A dual drug-loaded delivery system based on mPEG-PLGA nanoparticles (NPs) was developed to potentiate chemotherapy efficacy for glioblastoma. PTX/TMZ-NPs were prepared with double emulsification solvent evaporation method and exhibited a relat...

متن کامل

Construction of paclitaxel-loaded poly (2-hydroxyethyl methacrylate)-g-poly (lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine copolymer nanoparticle delivery system and evaluation of its anticancer activity

BACKGROUND There is an urgent need to develop drug-loaded biocompatible nanoscale packages with improved therapeutic efficacy for effective clinical treatment. To address this need, a novel poly (2-hydroxyethyl methacrylate)-poly (lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine [PHEMA-g-(PLA-DPPE)] copolymer was designed and synthesized to enable these nanoparticles to be pH responsiv...

متن کامل

Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment

A system of novel nanoparticles of star-shaped cholic acid-core polylactide-d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nano...

متن کامل

Formulation of temozolomide by folic acid-conjugated tri-block copolymer nanoparticles for targeted drug delivery

Introduction: Glioblastoma multiforme (GBM) is the most frequent primary malignant tumor of the brain. But, the treatment of GBM is one of the most problems in cancer therapy because of poor drug penetration across the blood-brain barrier (BBB). Targeting drug delivery system and conjugating targeting moieties was recognized to overcome the poor penetration of chemotherapy drug...

متن کامل

Ultrasound-Mediated Microbubble Destruction (UMMD) Facilitates the Delivery of CA19-9 Targeted and Paclitaxel Loaded mPEG-PLGA-PLL Nanoparticles in Pancreatic Cancer

Pancreatic cancer, one of the most lethal human malignancies with dismal prognosis, is refractory to existing radio-chemotherapeutic treatment modalities. There is a critical unmet need to develop effective approaches, especially for targeted pancreatic cancer drug delivery. Targeted and drug-loaded nanoparticles (NPs) combined with ultrasound-mediated microbubble destruction (UMMD) have been s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015